Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.055$
$w R$ factor $=0.170$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Dibenzoylterephthalic acid ethanol disolvate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, was synthesized by the reaction of benzene and pyromellitic acid dianhydride. The acid molecule is centrosymmetric. There are intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in the crystal structure.

Comment

The synthesis of 2,5-dibenzoylterephthalic acid has been reported (Imai et al., 1975). This paper presents the results of the single-crystal X-ray diffraction analysis of 2,5-dibenzoylterephthalic acid, (I).

(I)

The molecular structure of (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1. The asymmetric unit consists of one half of the molecule of (I), the molecule being centrosymmetric. An ethanol solvent molecule is also present. In the crystal structure, molecules are link by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular hydrogen bonds (Table 2), forming a two-dimensional layer structure (Fig. 2).

Experimental

A mixture of pyromellitic acid dianhydride $(6.9 \mathrm{~g}, 32 \mathrm{mmol})$, powdered $\mathrm{AlCl}_{3}(15 \mathrm{~g}, 120 \mathrm{mmol})$ and benzene $(100 \mathrm{ml})$ was heated with stirring at $338-343 \mathrm{~K}$ for 4 h , and was then poured into water $(150 \mathrm{ml})$ containing concentrated hydrochloric acid (14:1). After removing the benzene by steam distillation, the crude mixture was dissolved in dilute potassium hydroxide solution. After filtration to remove a small amount of insoluble matter, the acids were reprecipitated with hydrochloric acid. The precipitate which formed was filtered off and dried under reduced pressure. The crude product was then crystallized twice from boiling glacial acetic acid to give (I) (yield 70\%). Crystals of (I) suitable for diffraction measurements were grown by slow evaporation of a solution in ethanol at room temperature.

Received 27 April 2005 Accepted 16 June 2005 Online 24 June 2005

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{O}_{6} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=466.47$
Triclinic, $P \overline{1}$
$a=6.101$ (1) \AA
$b=8.598$ (2) \AA
$c=11.479$ (2) \AA
$\alpha=94.88(3)^{\circ}$
$\beta=98.56$ (3) ${ }^{\circ}$
$\gamma=92.42(3)^{\circ}$
$V=592.4(2) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.977, T_{\text {max }}=0.981$
2555 measured reflections
2327 independent reflections
1573 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.170$
$S=1.05$
2327 reflections
162 parameters
$Z=1$
$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.024 \\
& \theta_{\max }=26.1^{\circ} \\
& h=0 \rightarrow 7 \\
& k=-10 \rightarrow 10 \\
& l=-13 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.29 \mathrm{e}_{\mathrm{\circ}}^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 4$	$1.302(3)$	$\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$	$1.394(3)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.207(3)$	$\mathrm{C} 3-\mathrm{C} 1^{\mathrm{i}}$	$1.394(3)$
$\mathrm{O} 3-\mathrm{C} 5$	$1.209(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.473(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 1$	$124.6(2)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$122.6(2)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$121.4(2)$	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 2$	$118.70(19)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$114.02(18)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 2$	$118.58(19)$

Symmetry code: (i) $-x+1,-y,-z$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 4$	$1.08(4)$	$1.51(4)$	$2.563(3)$	$165(3)$
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$1.01(4)$	$1.80(4)$	$2.777(3)$	$161(4)$

Symmetry code: (ii) $-x+1,-y,-z+1$.

H atoms attached to O atoms were located in a difference Fourier map and refined, with $U_{\text {iso }}(\mathrm{H})$ values of $1.5 U_{\text {eq }}(\mathrm{O}) . \mathrm{H}$ atoms bonded to C atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius,1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) $1-x,-y,-z$.]

Figure 2
The crystal structure of (I). Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Imai, Y., Johnson, E. F., Katto, T., Kurihara, M. \& Stille, J. K. (1975). J. Polym. Sci. 13, 2233-2249.

